Rana Shahout

joint work with: Ran Ben Basat, Roy Friedman

o Example: Traffic to popular websites (Amazon, Google, Facebook)

a Gl

e Problems, Stream is hard to:

o Store

e Process

e [ransfer

Motivation

Wny Data Management Is Important

Essential for many applications such as: network momtormg financial
data trackers,.

MANAGE
DATA

EXPLORE
DATA

DEPLOY
& MONITOR

DEVELOP
MODELS

Motivation

Stream Formal Definition

e (Given a universe U, a stream S = x1, x2, . .. € Ux Is a sequence of
universe elements

* We are interested in computing a functionfon S

 Examples of interesting f functions include frequency, heavy
hitters, and count distinct

Motivation

Example of Data Monitoring

 "How many times an item has appeared in the stream??”
 Naive Solution: Allocate an exact counter for each element

 Problem: Memory constraints

SRAM vs.
DRAM

Motivation

Our solutions focus on minimizing the number of counters needed,
thereby allowing the system to monitor a large number of elements

using only SRAM.

Motivation

 Almost all algorithms are approximate, answer with error anad
guarantee a bound on the error

* (Glven function f, an approximate algorithm supports two operation:
o Add(x) - append x to stream S

e Query - return estimation of fon S

Motivation

Stream processing algorithms often build compact approximate
sketches of the input stream

Sketch: try to build a small data-structure to represent the data you
want to obtain from the stream

* [he smaller the data structure, the less accurate the results

Motivation

Challenges:
 Determine what portion to keep Iin the limited space

 Determine how to efticiently compute the summary in data
update

Problem

Within the last million items..
how many times a user bought a g between 202 and 172 most recent items”

how many times a user bought Q between 505 and 251 most recent items”?

Problem

Sliding Windows

* For most applications, OLD data is considered less relevant
* Apply aging mechanism for the sketches

o Sliding Window Model: Only last "W” elements are considered

data stream

m

’

windows —=

—] | | | X tlme
I I I I I

t1 t2 t3 t4 t5

Problem

The Problem With Existing Solutions

The window of interest may not be known a priori
OR

may be multiple interesting windows

Problem

Contribution

We study a model that allows the user to specity an interval of interest
that Is contained within the last w items at query time

We improve space and operation performance of the existing work

Definitions

Problem Definition

e Add(x): Given an element x, append it to stream

e |ntervalFrequency(x, i, j): Return an estimation of x frequency
between the 1 and j most recent elements of the steam, denoted by f K

(W ,€)— IntervalFrequency :
[P fS S+ We

Computation Model

Data Streams

- ~

=
Approximate Answer

Sliding Window + Sketch

Solutions

Existing Works - ECM

ECM combines Count-Min Sketch with Exponential Histograms
Count-Min Sketch is a stream sketch for estimating item frequency

Exponential Histograms Is a sliding window counter that can
guarantee a bounded relative error

ECM sketch replaces each Count-Min counter with an Exponential
histogram

* Naive Solution: RAW algorithm

e Advanced Solutions:
o ACC_K algorithm

e HIT algorithm

Solutions

' Nalve Solution: Raw

* Uses several instances of a black box algorithm that solves
frequency estimation over a fixed sized window

* Add(x): Add item x to all instances
* [nterval Query:
1. Query the relevant instances (closest to interval range)

2. Subtract the result

Wel4

Solutions

RAW vs. Existing Solution (ECM)

 Both consume same amount of memory

» Raw achieves a better query performance, (update time of ECM is
petter)

Solutions

N-Interval Problem

e Arriving elements may be inserted to blocks

xJdfx| | |vod] [xdx|x| [d] Jo| [x]e

e |ntervalQuery(x,1,]): Compute exact number of blocks x appears in
between blocks i, 3

N-Interval Problem (W ,&)— IntervalFrequency

R Reduction

Decides when to insert an item to block

Solutions

N-Interval Problem Definition

N-Interval Problem: Block Interval Frequency
Add(x): Given an element x, append it to stream
EndBlock(): New block inserted, old block leaves

IntervalQuery(x, i, j): Return the number (without error) of blocks x
appears in between blocks i, j

Solutions

Reauction

1. Break the stream into w sized frames
2. Divide each frame into n-equal-sized blocks, each of size W €

3. Employ Space Saving to track element frequency within each
frame

1. Whenever a counter reaches an integer multiple of the block
Size, assoclated it to most recent block

2. When the frame ends, flush Space Saving instance

Solutions

Space Saving Model

* Counter algorithm

e Keep k items and counts initially zero
o Count first k distinct item exactly

* Only over-estimation errors

* Frequency estimation is more accurate for significant elements

Space Saving Model
On item |

!

K=3

Solutions

© O 00 OO0
4

Soluti

D(X)

Implementing AD
X
@
{O

it offset mch block size =0
EndBlock

It result mod block size =0 (TTTTTTTTTTTTTTTTT]

Solutions

Implementing IntervalFrequency(x, i, j)

1. Compute relevant blocks numbers
2. Call Query of N-Interval problem

3. Return block size * result

Solutions

Advanced Algorithms

1. ACC_K Algorithms

2. HIT Algorithm

Solve N-Interval problem

Acc Algorithm

Approximate Cumulative Count

Solutions

ACC Algorithm

 Family of algorithms that solves N-Interval problem

» ACC, solves the problem using at most k tables for update and
2k+1 for queries

 [helarger k Is, The algorithm takes less space but Is also slower

Solutions

ACC, AIgOrlthm

o As part of the reduction we break the stream into W sized frames
and divide each frame into blocks.

 Each block has a table that tracks how many times each item has
arrived from the beginning of the frame

e Query at most 3 tables:

o Within the frame - compute interval by subtracting 2 tables

e |f It crosses two frames, one additional query

wasteful?!

Solutions

ACC, Algorithm

Saves space at expense of additional table access
Breaks each frame to \/n Sized segments

At end of each segments, we keep level-1 table that counts item
frequencies from the beginning of the frame

level-0 tables computes frequency within a segment for each block

X
i x 1]Ix
% C 1

n
n
dll
<
n
n
<

X 11|Ix 1
c 1

IO << —

X O

X O

X O

5
3
1
1
1 1 1 b 1
d 3
v 1
O

il

O O

X O >

X 2|Ix 2||x 2 21Ix 2Ix 2|Ix 3|Ix 4||x 5||X
dal|{d 1||d 1 11|d 2||d 2||d 3||d 3||d 3||d
Ty 1y 1y 11y 1y 1|V

b 1llb 1||b 1||b 1|{b 1]|b

X 2 VA
d
/'
X 2
d
Table

1

ACC
ACC,
Table,

Solutions

Answering Interval Frequency Query(ACC1)

e For (i, j], let block_i, block_7j be the relevant blocks

e |f block_i and block_7j are in the same frame:

| |

1(o e 14
. h:
) ‘?
! ‘Ié
I ! 4
J }
i Hl
f [
| z
1] b |
; /
i K
1 I
1 i
’)

| \ /

'
g
¥

Al

'

-

Solutions

Answering Interval Frequency Query(ACC1)

e |f block_i and block_j are NOT In the same frame:

?%

Solutions

Hit Algorithm

Hierarchical Interval Tree

Solutions

HIT Algorithm

» Uses hierarchical tree structure
 Each Node stores partial frequency of its sub-tree
e level, tracks how many times each item arrived within block

o level, of block; tracks how many items arrived between
|block block],0 <[<trailing _zeros(i)

i—2l41°

Solutions

HIT Algorithm

 Each level contains tables for half the blocks of previous level

 Higher levels of the tree allow efficient time computation

$
|
i
*i
(
}
i
’l
!

"
\l

e
e

3

X

4 5 o
Yy
ERIpnEE
X 2
d 1

v

D,

8

d

2 O X

xJdfx| | |vod] [xd|x|x| [d] |o
9 10 11 12 13 14 15

-

=~

-

—kh

X,d X

L4 2
41 d 1
h

X

a
ERIRNEE
X 3
d 1

o

[
\

I
¢
)
|

I

16 1§

|
!‘*
1
t

1 2

Each table tracks elements’ multiplicity from the previous

same level table

O O < X

B~ NN = O

Solutions

Answering Interval Frequency Query

e For (i, j], let block_i, block_7j be the relevant blocks

* Scan backward from block_j to block_i, greedily using the highest
possible level at each point.

e |f block_j> block_i all tables are valid

o Otherwise, use level 0 between block_0 to block_j and compute
block_i to block_n as before

Evaluations

 C++ implementation

e Backbone dataset

Results

Memory Consumption

107}

Memory [MB]

Accuracy Guarantee (e¢)

doic i I Ace, JELACC: AN ACC, R ACC, NLwess YPEECY W RAW

Results

Update Speeo Qomparison

© ©

- -

© ©

- < | | - . < S |

® \ <<]<l<-<]<ﬂ<<l O 107} <]<]<<Jq<|<<;

S 7w S | . '
1| 10 10

N 10 | g)]

~~ . ~~

U | V)

O, O,

4+ +J

(U fU 10° |

© 100 © 000009000904

O | i Sl Sl R A L S A S A Q. 0 5 I8 SIT I8 519 530 53T 550 553 594 525

D I3 512 511 510 59 58 57 56 55 54 53 D 10215 16 17 518 519 520 521 522 573 24 25

Accuracy Guarantee (¢) Maximal Window Size (W)

W= 2720 ik rr e acc, I Aco. AN ace, & acc, P woss 4 ECM

Results

Query Speed Comparison

(-
o

-
o
o
|

e
-
.

(-
I
W N

Queries/second [10°]

(-

0-2-33 2-'12 2-'11 2-'10 2'—9 58 2'—7 2‘-6 2'—5 2'—4 23
Accuracy Guarantee (¢)

ok 1 I Acc, EEACC. AN ACC, TG Acc, rwoss pEEcH B RAW
Intervals = 1%xW

Observed Error

m Z
4 |
O \
M 3
U _
(C]I)ﬁ O —>—
- 4 .
LLJ *<h N CEPRT
m 102
. QN .
Z .
I ol A
,,,,,,,,,,,,, X .
0 2 4 6 8 10 12 14

Sk I AcC, I ACC:

Memory (Mbytes

Results

A\ ACC, "L AcCc; TYF_WCSS ngc.u N T WG

Results

Update Speed Comparison

3 rRAW

0.35¢
— 0.30¢
0.25}

ond [Millions]
o
N
-

ates/sec

A 27 2 2% 2
Accuracy Guarantee (¢)

Results

Variable Interval Sizes

O
-

—

W Pruia@sinin C JERRY @ rinininininininn @ riririmiaiEiEiEiE i <
2 104

O T

O -. 3K 1Lk .:'.“.“.“."'.".'f'.".".'.".".".'.".".".'l'J'.'L..v WA '.'h'!'J'.'h'f'J'.'i'f'd'-'h'!'d'.'h'!'i
Q | |
% 1000 & ¢ " : f
Q 11101 < .
-

Q

D -1

O 101% 5% 10%15% 30% 50%

Interval Size

ok i I scc, EACC: AN AcC, TG ace, grwess EEcy B8 RAW

Thank YOU!

Results

ECM Space and Performance Comparison

= 0.020 . . ™~ 3.0

- 50

o -

— 25 —

- 0.015 yo) 4)

- g 2.0t >

O | S i

0 O >..30

Q 0010 Q 1.5 -

N N O

~~ ™~ 201 |
N $ 1.0} - O

E__) 0.005 : +J Q —4
T —4 _g 0.5 = 19 |
- P/k O

O 0090 190.1% 10% = % 101% 10% 0°01%0.1%

Error ProE)abiIity 0 Error ProE)abiIity 0 Error Prc;cyE)abiIity 0

10%

Algorithm Space Update Time Query Time Comments

WCSS (8 O(e~ L log(W|U|)) O(1) O(1) Only supports fixed-size window queries.
ECM (33 O(e ?log W log 6~ 1) O(log 6~ 1) O(e T logWlogd~?) Only provides probabilistic guarantees.
RAW O(e~ 2 log(W[U|)) O(e™?) O(1) Uses prior art (WCSS) as a black box.
Ofe1 loggWIU) Constant time operations for
ACCy +ke= /) Jog e"l) O(k +€ /W) O(k) k=0(1)Ae=QW12),

Optimal space when log? ¢! = O(log(W[U])),

HIT | O(e™*(log(W[U|) +1log°e™")) | O(1+ (¢7* - loge™) /W) O(loge™") O(1) time updates when € = (lﬁgw—)

