Stream Frequency over Interval Queries

joint work with: Ran Ben Basat, Roy Friedman

Rana Shahout

• Example: Traffic to popular websites (Amazon, Google, Facebook)

- Problems, Stream is hard to:
 - Store
 - Process
 - Transfer

Requirement: keep up with the rate of incoming data (line speed)

Why Data Management is Important

Essential for many applications such as: network monitoring, financial data trackers,...

DEPLOY & MONITOR

Stream Formal Definition

- universe elements
- We are interested in computing a function f on S
- Examples of interesting f functions include **frequency**, heavy hitters, and count distinct

• Given a universe U, a stream $S = x1, x2, \ldots \in U_*$ is a sequence of

Example of Data Monitoring

- "How many times an item has appeared in the stream??"
- Naive Solution: Allocate an exact counter for each element
- **Problem**: Memory constraints

SRAM vs.

Our solutions focus on minimizing the number of counters needed, thereby allowing the system to monitor a large number of elements using only SRAM.

- Almost all algorithms are approximate, answer with error and guarantee a bound on the error
- Given function f, an approximate algorithm supports two operation:
 - Add(x) append x to stream S
 - Query return estimation of f on S

Stream processing algorithms often build compact approximate sketches of the input stream

Sketch: try to build a small data-structure to represent the data you want to obtain from the stream

• The smaller the data structure, the less accurate the results

Challenges:

- Determine what portion to keep in the limited space
- update

• Determine how to efficiently compute the summary in data

Within the last million items. how many times a user bought a present between 202 and 172 most recent items?

how many times a user bought

between 505 and 251 most recent items?

- For most applications, OLD data is considered less relevant
- Apply aging mechanism for the sketches
- Sliding Window Model: Only last "W" elements are considered

Sliding Windows

data stream time

The Problem With Existing Solutions

The window of interest may not be known a priori

OR

may be multiple interesting windows

Contribution

that is contained within the last w items at query time

We improve space and operation performance of the existing work

We study a model that allows the user to specify an interval of interest

Problem Definition

- Add(x): Given an element x, append it to stream
- IntervalFrequency(x,i,j): Return an estimation of x frequency

 (W, ε) – IntervalFrequency:

 $f_x^{i,j} \leq \hat{f}_x^{i,j} \leq f_x^{i,j} + W \mathcal{E}$

between the i and j most recent elements of the steam, denoted by $\hat{f}_{r}^{i,j}$

Motivation

Problem

Computation Model

Data Streams

Results

Existing Works - ECM

- ECM combines Count-Min Sketch with Exponential Histograms
- Count-Min Sketch is a stream sketch for estimating item frequency
- Exponential Histograms is a sliding window counter that can guarantee a bounded relative error
- ECM sketch replaces each Count-Min counter with an Exponential histogram

- Naive Solution: RAW algorithm
- Advanced Solutions:
 - ACC_K algorithm
 - HIT algorithm

Solutions	Results

Naive Solution: Raw

- Uses several instances of a black box algorithm that solves frequency estimation over a fixed sized window
- Add(x): Add item x to all instances
- Interval Query:
 - 1. Query the relevant instances (closest to interval range)
 - 2. Subtract the result

RAW vs. Existing Solution (ECM) Both consume same amount of memory

- better)

• Raw achieves a better query performance, (update time of ECM is

N-Interval Problem

• Arriving elements may be inserted to blocks

between blocks i,j

IntervalQuery(x,i,j): Compute exact number of blocks x appears in

N-Interval Problem

Decides when to insert an item to block

N-Interval Problem Definition

- N-Interval Problem: Block Interval Frequency
- Add(x): Given an element x, append it to stream
- EndBlock(): New block inserted, old block leaves
- IntervalQuery(x,i,j): Return the number (without error) of blocks x appears in between blocks i,j

Reduction

- 1. Break the stream into w sized frames
- 2. Divide each frame into n-equal-sized blocks, each of size $W \epsilon$
- 3. Employ Space Saving to track element frequency within each frame
 - size, associated it to most recent block
 - 2. When the frame ends, flush Space Saving instance

1. Whenever a counter reaches an integer multiple of the block

Space Saving Model

- Counter algorithm
- Keep k items and counts initially zero
- Count first k distinct item exactly
- Only over-estimation errors
- Frequency estimation is more accurate for significant elements

	Solutions	
--	-----------	--

Motivation

Problem

Space Saving Model

Increment counter for i

No

Motivation

Problem

Space Saving Algorithm • • • • • • •

K=3

3

2

1

Implementing ADD(x)

If result mod block size = 0

	_			
٦		_		
			_	

Implementing IntervalFrequency(x,i,j)

- 1. Compute relevant blocks numbers
- 2. Call Query of N-Interval problem
- 3. Return block size * result

Advanced Algorithms

1. ACC_K Algorithms

2. HIT Algorithm

Solve N-Interval problem

Acc Algorithm Approximate Cumulative Count

ACC Algorithm

- Family of algorithms that solves N-Interval problem
- ACC_k solves the problem using at most k tables for update and 2k+1 for queries

• The larger k is, The algorithm takes less space but is also slower

ACC₁ Algorithm

- and divide each frame into blocks.
- arrived from the beginning of the frame
- Query at most 3 tables:
 - Within the frame compute interval by subtracting 2 tables
 - If it crosses two frames, one additional query

As part of the reduction we break the stream into W sized frames

Each block has a table that tracks how many times each item has

wasteful?!

ACC₂ Algorithm

- Saves space at expense of additional table access
- Breaks each frame to \sqrt{n} sized segments
- At end of each segments, we keep level-1 table that counts item frequencies from the beginning of the frame
- level-0 tables computes frequency within a segment for each block

Х	1
С	1

Answering Interval Frequency Query(ACC1)

- For [i, j], let block_i, block_j be the relevant blocks
 - If block_i and block_j are in the same frame:

Answering Interval Frequency Query(ACC1)

• If block_i and block_j are NOT in the same frame:

Hierarchical Interval Tree

HIT Algorithm

- Uses hierarchical tree structure
- Each Node stores partial frequency of its sub-tree
- $level_0$ tracks how many times each item arrived within block
- $level_l$ of $block_i$ tracks how many items arrived between $[block_{i-2^l+1}, block_i], 0 < l \le trailing_zeros(i)$

- Each level contains tables for half the blocks of previous level
- Higher levels of the tree allow efficient time computation

HIT Algorithm

Answering Interval Frequency Query

- For [i, j], let block_i, block_j be the relevant blocks
 - Scan backward from block_j to block_i, greedily using the highest possible level at each point.
 - If block_j> block_i all tables are valid
 - Otherwise, use level_0 between block_0 to block_j and compute block_i to block_n as before

Evaluations

- C++ implementation
- Backbone dataset

Definitions	Solutions	Results
etup		

Results

Update Speed Comparison

Query Speed Comparison

Results

Results

Motivation

Update Speed Comparison

Results

Thank YOU!

ECM Space and Performance Comparison

Algorithm	Space	Update Time	Query Time	Comments
WCSS ^[8]	$O(\epsilon^{-1}\log(W \mathcal{U}))$	O(1)	O(1)	Only supports fixed-size window queries.
ECM [33]	$O(\epsilon^{-2}\log W\log \delta^{-1})$	$O(\log \delta^{-1})$	$O(\epsilon^{-1}\log W\log \delta^{-1})$	Only provides probabilistic guarantees.
RAW	$O(\epsilon^{-2}\log(W \mathcal{U}))$	$O(\epsilon^{-1})$	O(1)	Uses prior art (WCSS) as a black box.
	$O(\epsilon^{-1}\log(W \mathcal{U}))$	0		Constant time operations for
ACC_k	$+k\epsilon^{-(1+1/k)}\log\epsilon^{-1}$	$O(k + \epsilon^{-2}/W)$	O(k)	$k = O(1) \wedge \epsilon = \Omega(W^{-1/2}).$
				Optimal space when $\log^2 \epsilon^{-1} = O(\log(W \mathcal{U} $
HIT	$O(\epsilon^{-1}(\log(W \mathcal{U}) + \log^2 \epsilon^{-1}))$	$O(1 + \left(\epsilon^{-1} \cdot \log \epsilon^{-1}\right)/W)$	$O(\log \epsilon^{-1})$	$O(1)$ time updates when $\epsilon = \Omega\left(rac{\log W}{W}\right)$.

