### Data Streams

soego nga ralpHehoendeaa s lobrde:uiae #Udptla tlinrl uje osapi lo i.nbiénssu d hdc;nin e p+adta spltaea cze l rsisatcloe Qraidsniteseter rsialeiiflounicetaape e blie o 1 la n br.agl intesnan ereeaiun uoble art rd .lsQigae.eiorrroscexth esi . eggs eelafsyasofauageearsttdoayd tr otaes nif , aafala.rrueiúaisi inent o.me ilofo progrejes cédiiloriducs edsr a, tm r dsrpiee oeooeab amla,s eaano eea tesu i i poimoninu sodeatsaariat,ipsssel mflsatryaoonuyeroxai alojc fi ucfitblc ns ia nsdn)aleitseoh oereu sy ooan rEsfaendócsmdpáo; ed oc rri aerci ngoqiss snj mxost etiosg aolosr:h orie.eepoejrsr eoc eooavei nusyjleari ú emidl dm cerdaaa au reesós ceoelceleaao d r esraariseanj t meca ilsos : b luutsnseo t pc .cplsinforreud r selotisue uno filr iube da artsr.a.iia soñ ad:o tadearlou oe o qa eó n iyicnerna xl lretesit citieral roebgesn r nerdialieur nfi t rl sdoaaau .esf.u tátaa nonu ciencir r sueuiolnraml tesüifn.trcolr osnse novče oo neaveocenupat )l/e ndofaa deisco n cpaftdiúss eo c aejoulooent ju.úoaéetu tiseo on umbesoa.leecoidmeraciaibtager s sigfortiicnana udbuoei soaear Intlf a (eedadc creeosouTsteyo .solou jt cs inr joonct.Bptséeogl oenaaa c cziúngvee n r io morce b use rl jnäads uor.sbrniiusb os r gurvo li sseosleralioungsoedze otduyasosueaaigyiencnega edailelianriit gldsuseesd aemusocol vaas ees u rno(ea tosrrn o naà e rlueeens.ergdos caecocicoCenl agaore icollnó aTocstsñah lsmisrrn lia a noaubnadtuef inteur aec rerobealo enr canaoYessoets orre nalidaccropuod eolbao.ortHiguenr.ar AMbolrhao.eiridietjfnoäav En ul reldl. e)o5 g iedofpn aao ts a fseenneulepyned ie, reeoa; sb nroeéhma elb allrdeoetdsmopssasesDd bleud teeca ou.nes a.mandonoavf osrres joà ghare.i ls fedoAcermf desilsge a. uosalceu a rn o fsiodcra ateoerteiesrnTosl sail oliurgnogbns,nsóc róddsiayibzitetada a oa a n rendersos iteto no ;b ttsMnnal n sanngeoaar us j iegagnee r.e ssagbdfi biesvoi.yleele.ia.si e o ni emadplyTvoduodstsiir tis.jiopraoointsa maree coinego Irp.ous ge minispeildirrezunsinsc eab in tont di lige flecisigs ailriead rr lo bspnaezaenst ig s aeaoserp al sotoprootsypsooeso, a vy t podpsrbha honp alrmord ctns binseti e sr. n se es ossec ol)i deavosaaetmos reeuropnono indoorrhanpz.l ou c i dedetal sci cuvtasde tea f ssnte, eac úasbuni hsudisore)s obaceno nearod fpol mantc ye ir uri eulabelaeamo r nrisaa to coae yne del.er astau neme eCarts Bjionlleaiu.1 coeais ado epóbepipeaoi t.eefvm tt ro opmrliiafahcesgeb ritnicrut ulp la opefeae igeo s masrees, sredruupur gznaá na veg df.eeltsasgc s lnsopoi mss . indali n ielaéd ru ood nsb o df ahn ialán ol lingimiléáepzaseir el n ee ai e mecr op mrooi d io eereld cato aesdpue toeitarrn btcna oaulial eegdtedat goeita ea nol nposfedirceae.bnnseg lin m-EaidslérnisLtp f.ul s bue lou g. ea dr amundsubeepe a Borgsó.lLaxooC m ati nautaan alr d nci smitdeecsngeVoaleid oátavh e ibness bt f ocresdsobdmieenbl e eumeinr nns.is.eoeod oei si oilaih oladoanr cey aensiesr cest bi an otsu ceseob cin.g uLu rVag ileápaTp.tm sovine.lbnala ni n ea lar ssainndup rrpei trd ionaturuel i erebiol mia ir usx lui d sitioio manneadorisocol vis elt o bemesrent nosso celugag assmcyó lcesnaisfe.a eptmpd sa

## What is data stream?

- Large Data Set:
  - Continuous
  - Massive
  - Unbounded
  - Possibly infinite
- Fast changing and requires fast, real-time response
- Example: Traffic to popular website (Facebook, Google, Amazon)



st, real-time response e (Facebook, Google, Amazon)

## Data stream management

- Essential for many applications such as:
  - Financial applications
  - Network monitoring

## Problems?

- Stream is hard to:
  - Store Data is continuously go or index it
  - Process
  - Transfer

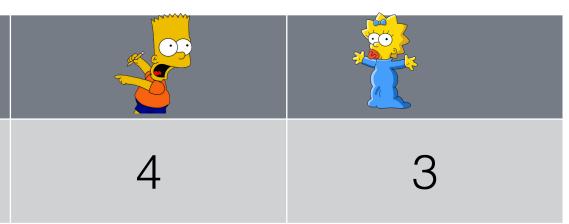
### • Store - Data is continuously growing faster than our ability to store

### Difficult to Process Unbounded number of elements



| Count | 4 | 5 | 3 |
|-------|---|---|---|

...but we want finite space, depending on the problem





### Difficult to Process Short processing time for each element in the stream

- Only one single pass at the data

### Why stream processing is important?

Answering queries about this sort of data requires clever observation techniques and data compressing methods

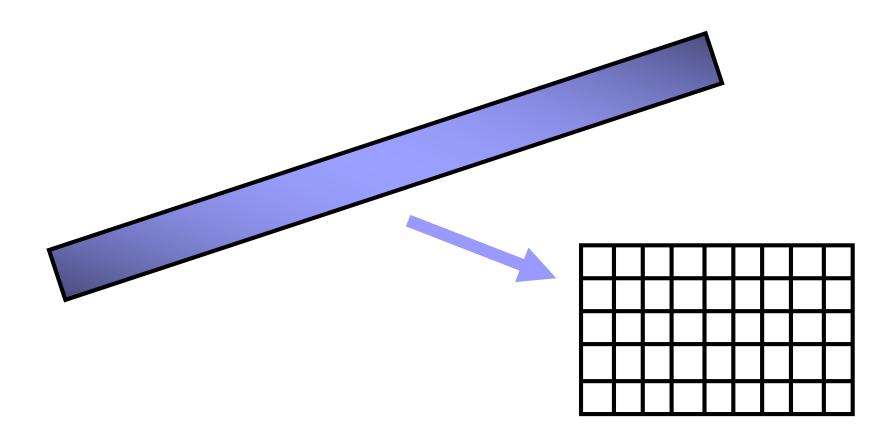
## Generic solution

### Stream processing algorithms often build compact approximate sketches of the input stream



### Sketch

- obtain from the stream
- The smaller the data structure, the less accurate the results



### Try to build a small data-structure to represent the data you want to

## Generic solution

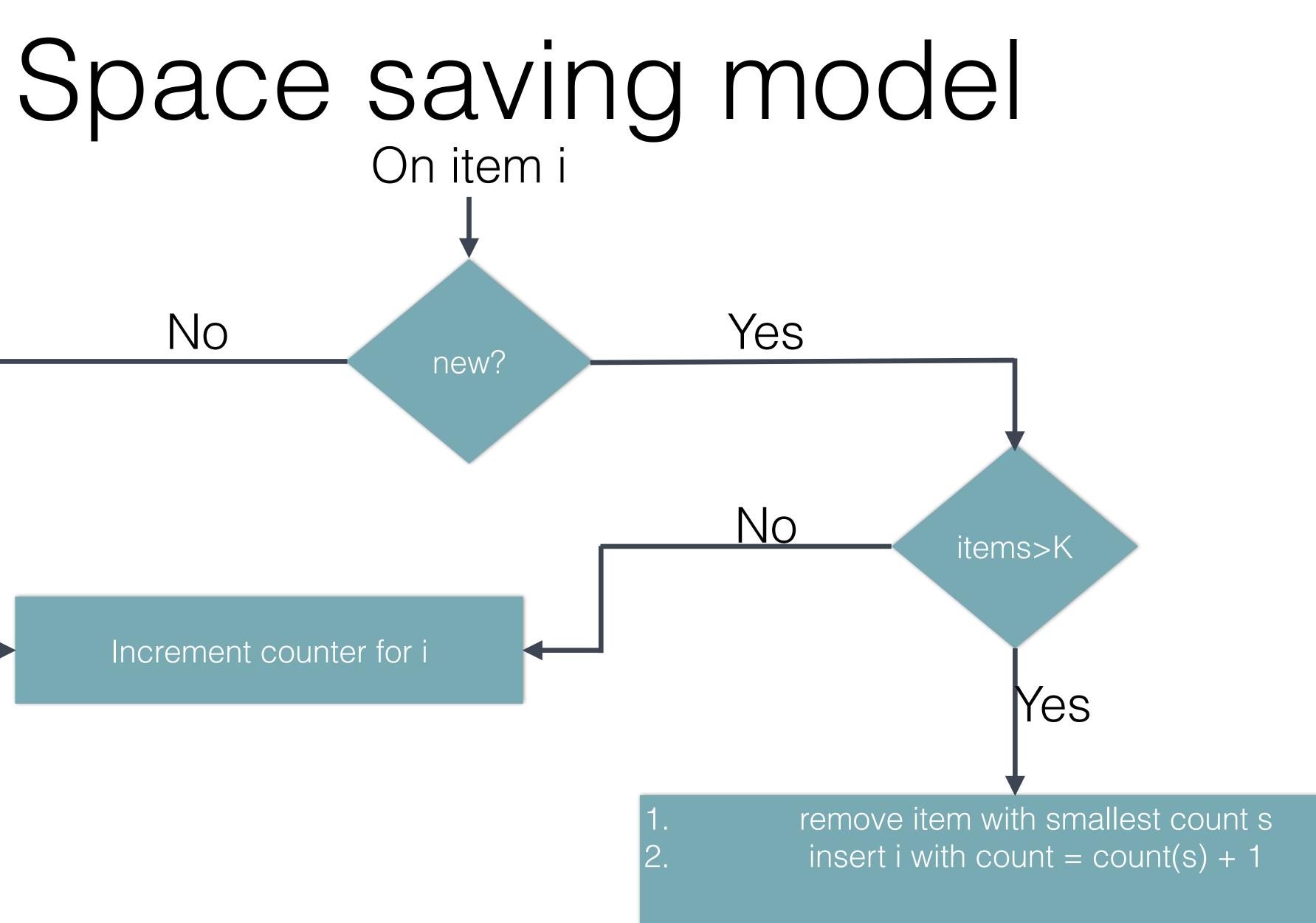
### Almost all algorithms are approximate, answer with error and guarantee a bound on the error

# Space saving algorithm

- Keep k items and counts initially zero
- Count first k distinct item exactly

No

Increment counter for i





## Space saving algorithm









## Space saving Guarantees

- When  $k = \frac{1}{\varepsilon}$
- We denote the overall number of insertion by Z
- The minimal counter is at most Z
- The estimation error is Z

 $\mathcal{E}$ 

 $\mathcal{E}$ 

## Space saving algorithm



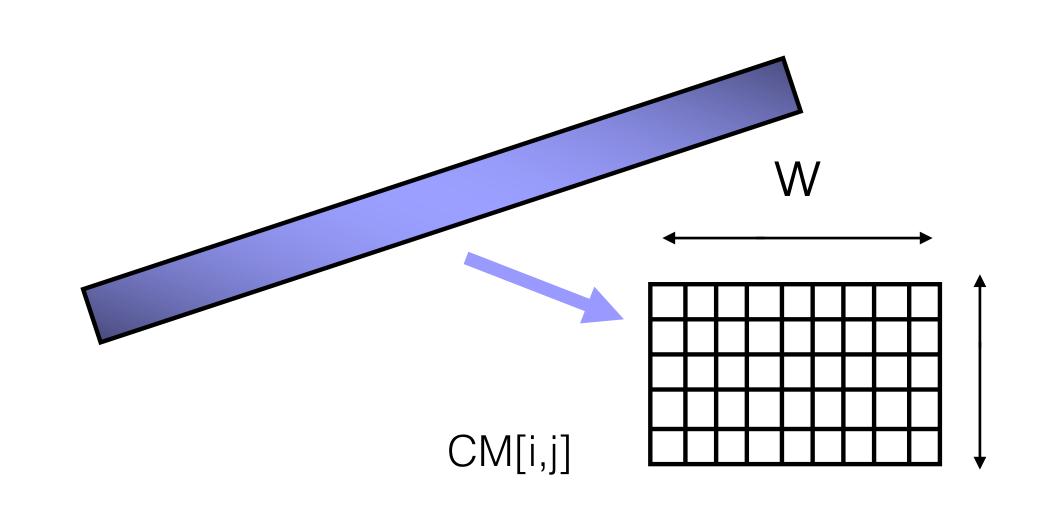




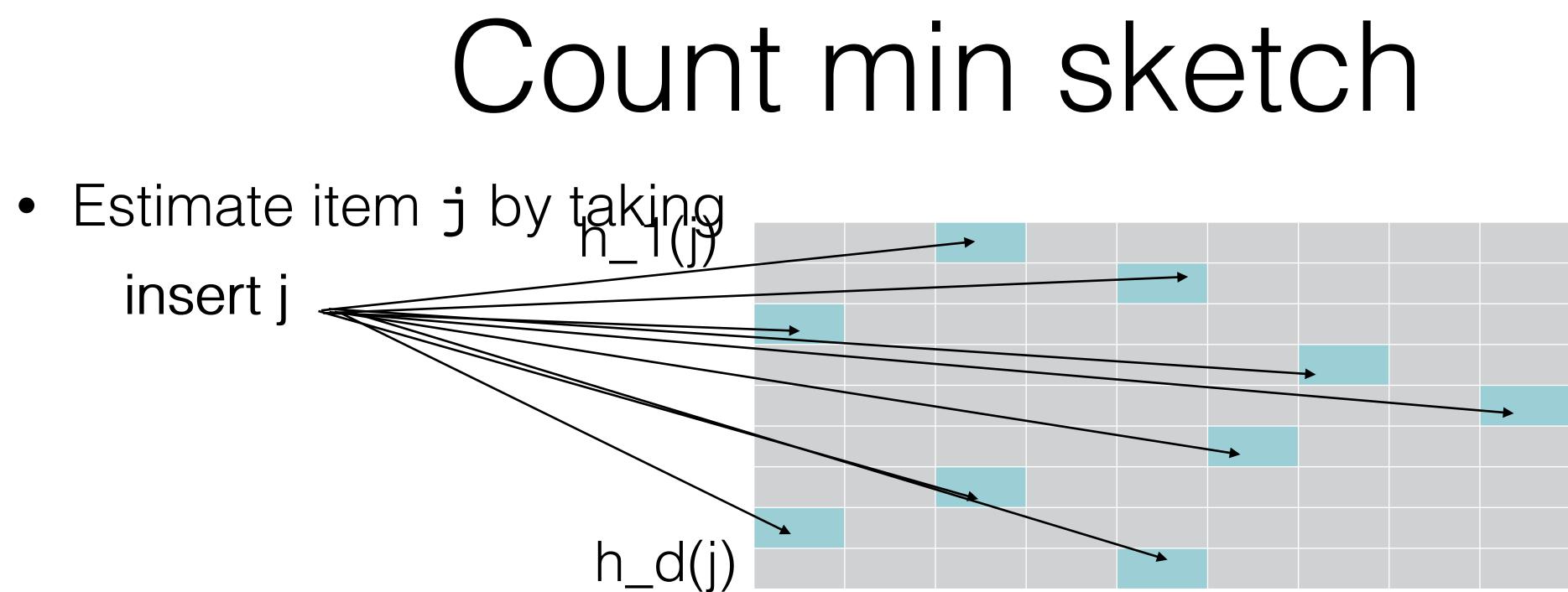


## Count min sketch

- Sketch that estimate item's frequency over a
- Creates a small summary as an array of w\*d
- Use d hash functions to map to [1...w]







### $\min_{k} \{ CM[k,h_{k}(j)] \}$

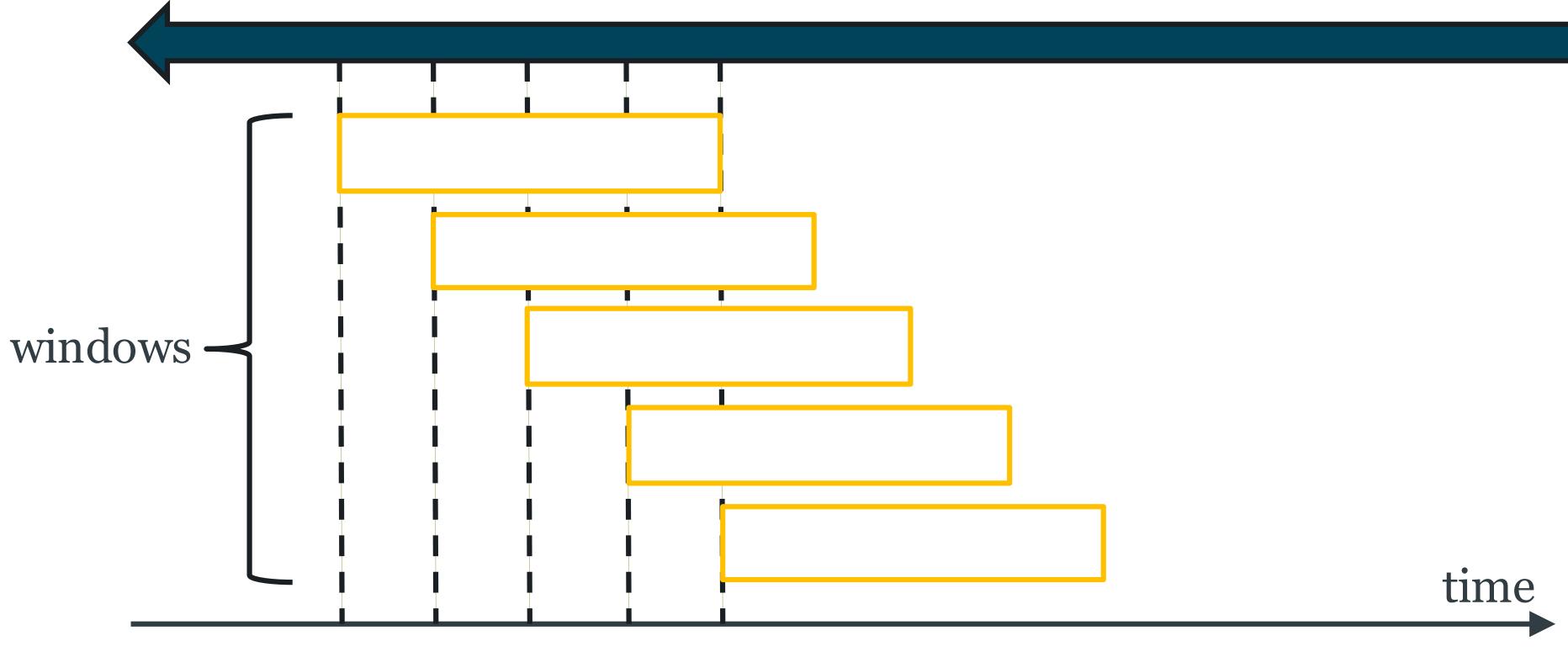
## Count min sketch Guarantees

- than  $\varepsilon ||A||_{(input stream as a vector A)}$  in space  $O(1/\varepsilon \log 1/\delta)$
- Probability of error is less than  $1-\delta$

CM sketch guarantees approximation error on point queries less

- For most applications, OLD data is considered less relevant
- Apply aging mechanism for the sketches
- Sliding Window Model:
  - Only last "W" elements are considered

### Sliding windows



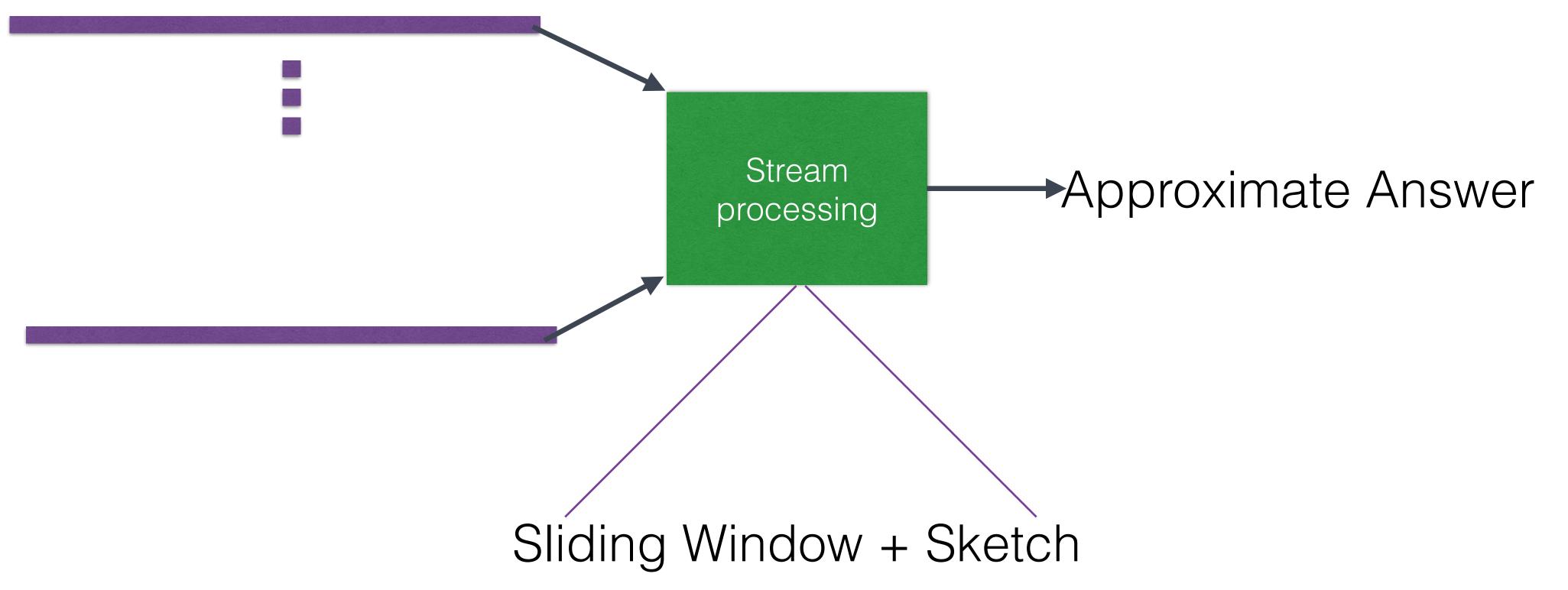
t1 t2 t3 t4 t5

### Sliding windows

### data stream

## Computation Model

### Data Streams



### The Problem with existing sliding window solutions

The window of interest may not be known a priori OR

may be multiple interesting windows

## Contribution

## that is contained within the last w items at query time

We improve space and operation performance of the existing work

We study a model that allows the user to specify an interval of interest

# Existing Works - ECM

- Introduce sketching technique, called ECM Exponential Count Min
- ECM combines count-min sketch with Exponential histograms
- Exponential histograms is a sliding window counter that can guarantee a bounded relative error

# ECM sketch replace each Count-Min counter with Exponential

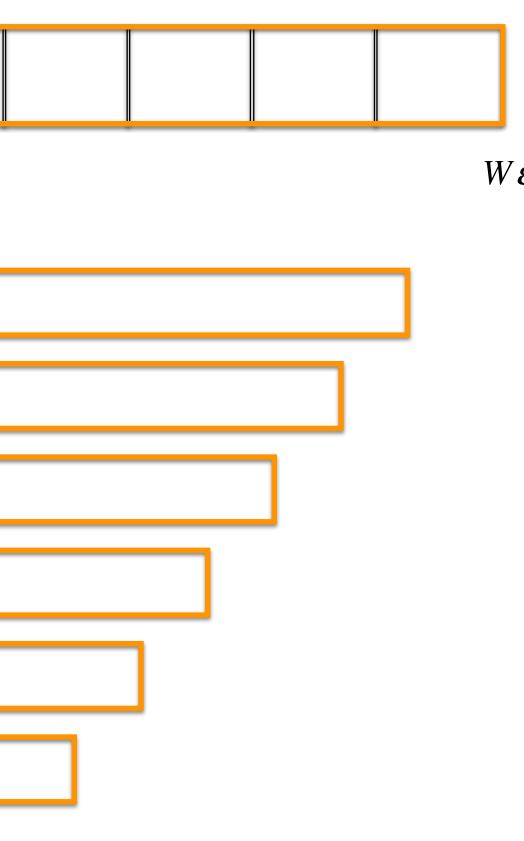
- ECM sketch replace each Cou histogram
- ECM has an error probability

## Naive solution: Raw

- Uses several instances of a black box algorithms that solves frequency estimated over fixed sized window
- Add(x): Add item x to all instances
- Interval Query:
  - 1. Query the relevant instances (closest to interval range)
  - 2. Subtract the result

|  | W |  |  |
|--|---|--|--|
|  |   |  |  |

 $W\varepsilon/4 \quad W\varepsilon/4 \quad W\varepsilon/4$ 



 $W\varepsilon/4$ 

### RAW vs. ECM

- RAW achieves constant query time while ECM answers queries in  $O(\varepsilon^{-1}\log W\log\delta^{-1})$
- Both consumes same amount of memory
- RAW is deterministic while ECM has an error probability

# Problem Definition

- Add(x): Given an element x, append it to stream
- IntervalFrequency(x, i, j): Return an estimation of x frequency

  - $f_{x}^{i,j} \leq \hat{f}_{x}^{i,j} \leq$

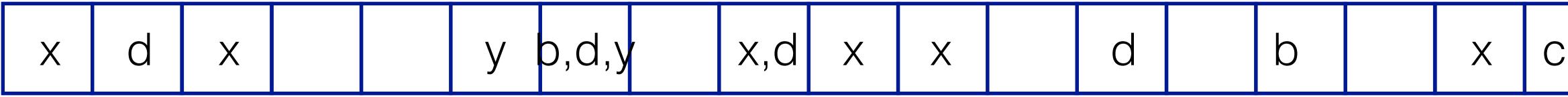
between the i and j most recent elements of S, denoted by  $\hat{f}_{r}^{i,j}$ 

 $(W, \varepsilon)$  – IntervalFrequency:

$$f_x^{i,j} + W \mathcal{E}$$

# n-interval problem

• Arriving elements are inserted to blocks



Compute exact block interval frequencies within the blocks

N=18

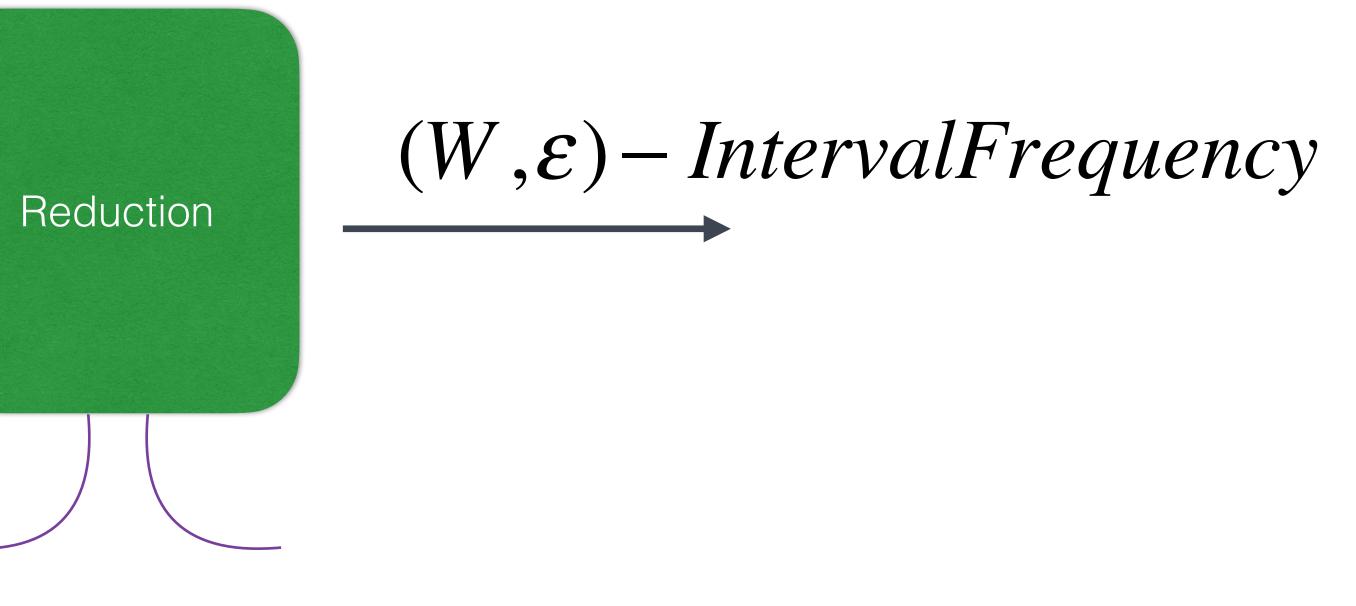
### N-Interval problem Definition n-Interval Problem: Block Interval Frequency

- Add(x): Given an element x, append it to stream
- EndBlock(): New block inserted, old block leaves
- appears between blocks i,j

• IntervalQuery(x, i, j): Return the number (without error) of blocks x

### n-Interval Problem

### Decide when to add elements in the blocks



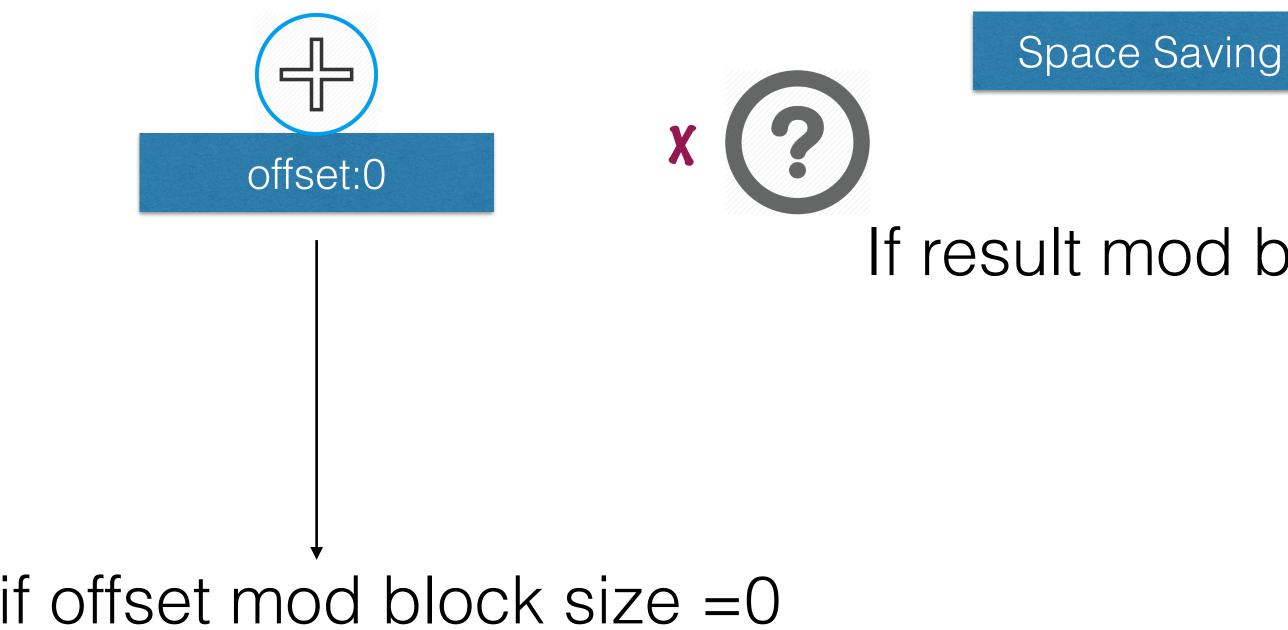
## Reduction

- 1. Break the stream into w sized frames
- 2. Divide each frame into n-equal-sized blocks, each of size
- 3. frame
  - size, associated it to most recent block
  - 2. When the frame ends, flush Space Saving instance

 $W \boldsymbol{\mathcal{E}}$ Employ Space Saving to track element frequency within each

1. Whenever a counter reaches an integer multiple of the block

### Implementing ADD(x) X



EndBlock

### If result mod block size = 0

### Implementing IntervalFrequency(x,i,j)

- 1. Compute relevant blocks number
- 2. Call Query of n-interval problem
- 3. Return block size \* result

### n-Interval Problem

### $(W, \varepsilon)$ – IntervalFrequency

Reduction



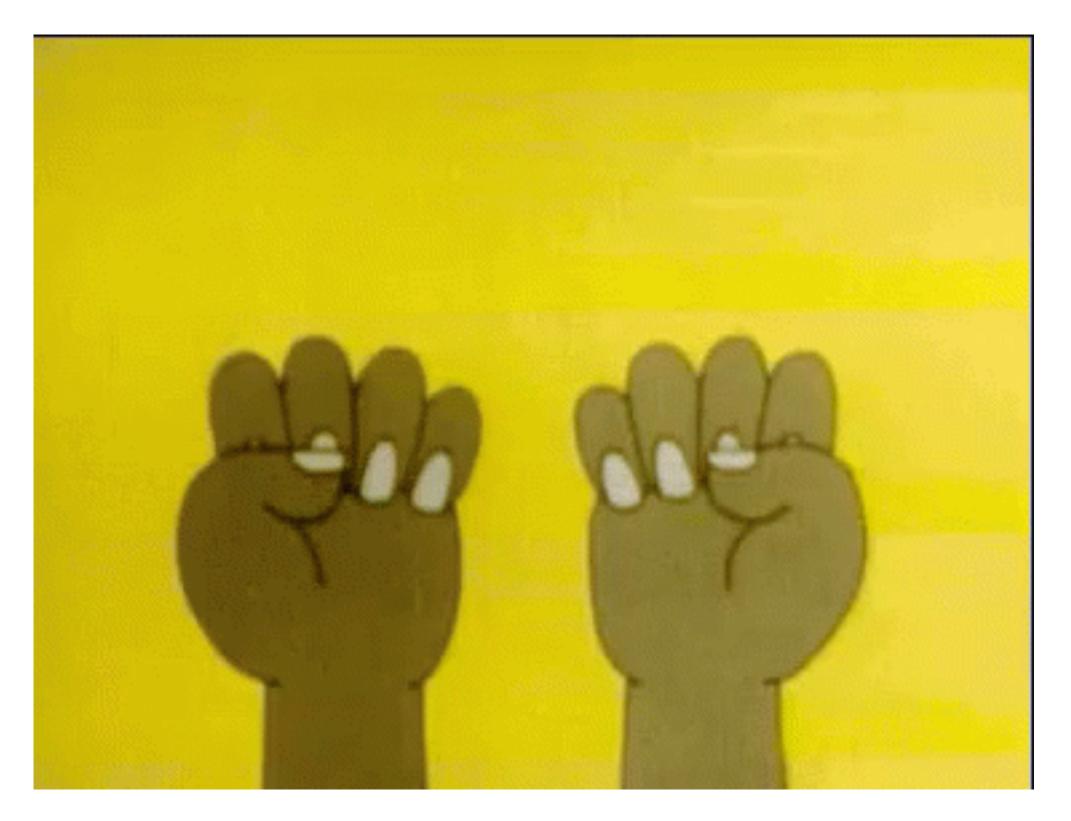
## Advanced algorithms

### 1. ACC\_K Algorithms

2. HIT Algorithm

Solve n-Interval problem

### Acc Algorithm Approximate Cumulative Count



# Acc algorithm

Family of algorithms that solves n-interval problem

• solves the problem using  $ACQ_k + 1$  for queries

- The larger k is, The algorithm takes less space but is also slower
- Break the stream into frames of size n (maximal window size)
  - Any n sized window intersects with at most two frames

solves the problem using at most  ${\bf k}$  hash tables for update and

## $ACC_1$ algorithm

- arrived from the beginning of the frame
- Query at most 3 tables:
  - Within the frame compute interval by subtracting 2 tables
  - If it crosses two frames, one additional query

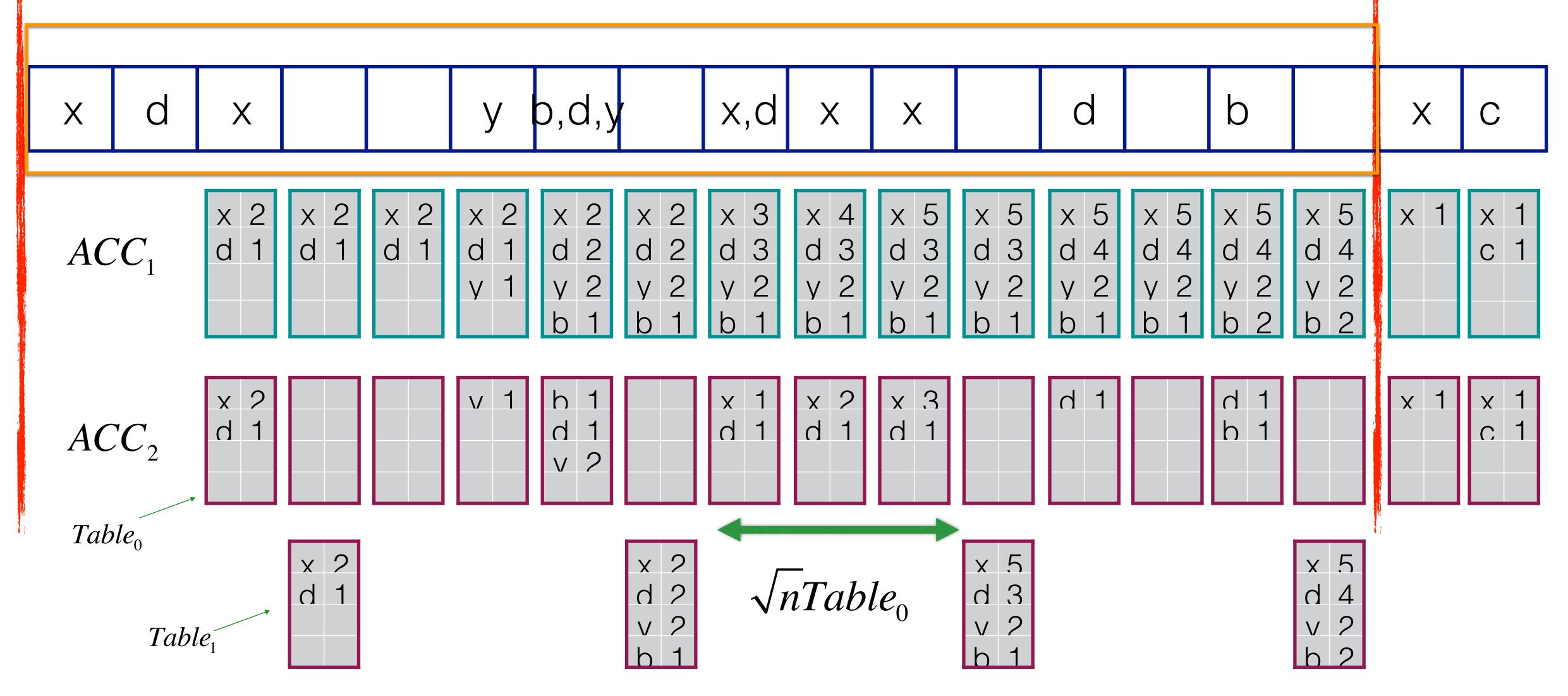
## Each block has a table that tracks how many times each item has

wasteful?!

## ACC<sub>2</sub> algorithm

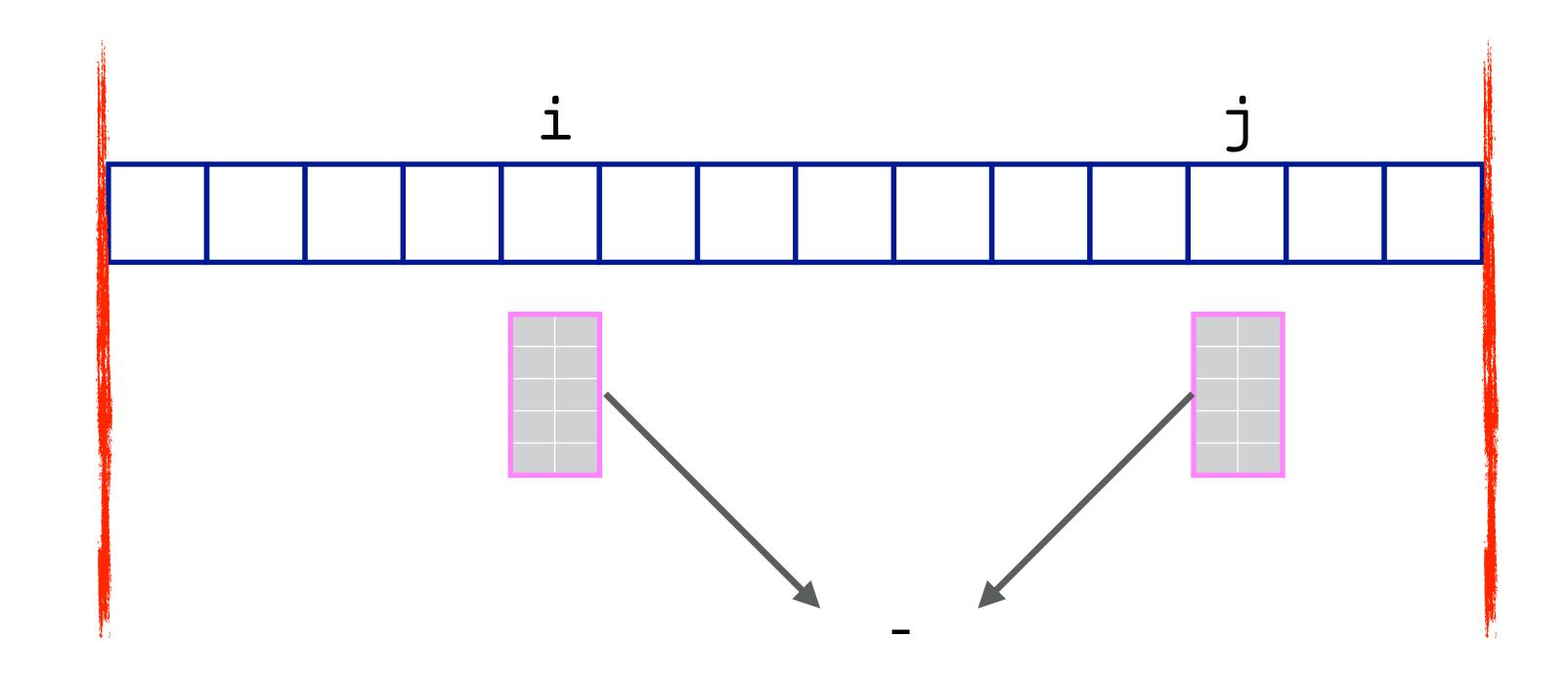
- Saves space at expense of additional table access
- Breaks each frame to sized segments
- At end of each segments, we keep level-1 table that counts item frequencies from the beginning of the frame
- level-0 tables computes frequency within a segment for each block

# ACC Algorithm



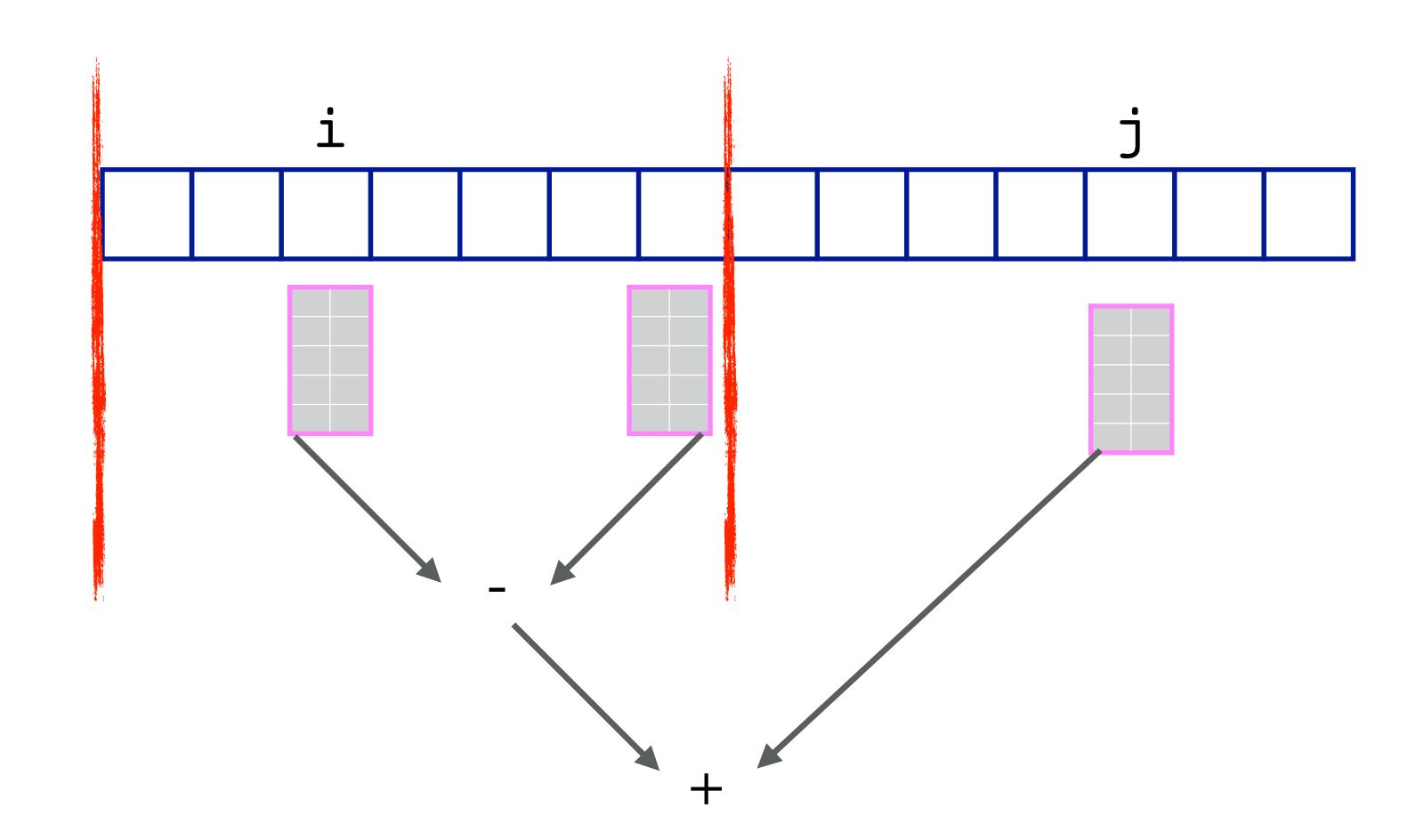
### Answering interval Frequency query

- For [i, j], let block\_i, block\_j be the relevant blocks
  - If block\_i and block\_j are in the same frame:



# Answering interval Frequency query

• If block\_i and block\_j are NOT in the same frame:



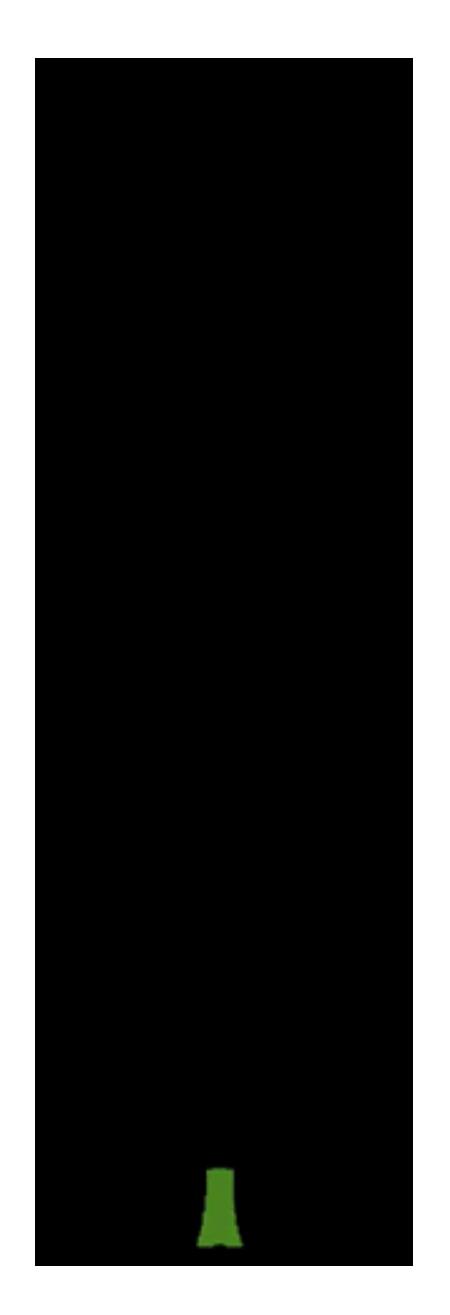
### Answering interval Frequency query table may includes blocks that already left the • Corner case:

- level, table
- Solution: Maintain ghostTables for leaving segments
  - contains
- Subtract the corresponding ghostTable as well ghostTable[l]

table if last leaving block

level

# Hierarchical Interval Tree



# HIT Algorithm

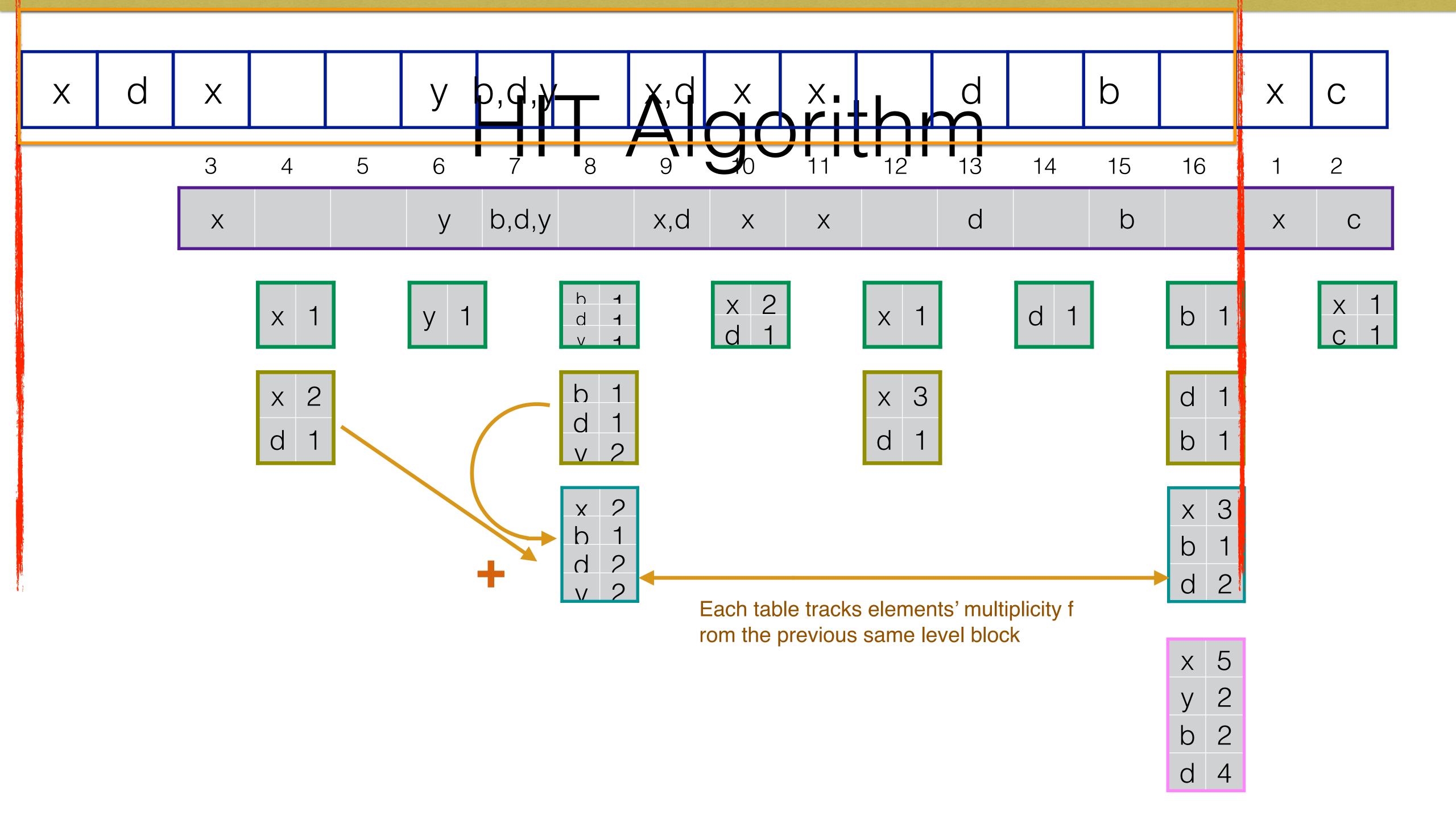
- Uses hierarchical tree structure
- Nodes stores partial frequency of its sub-tree
- tracks how many times each item arrived within block
- $level_0$  of tracks how many items arrived between

level<sub>1</sub> block,

 $[block_{i-2^{l}+1}, block_{i}], 0 < l \leq trailing\_zeros(i)$ 

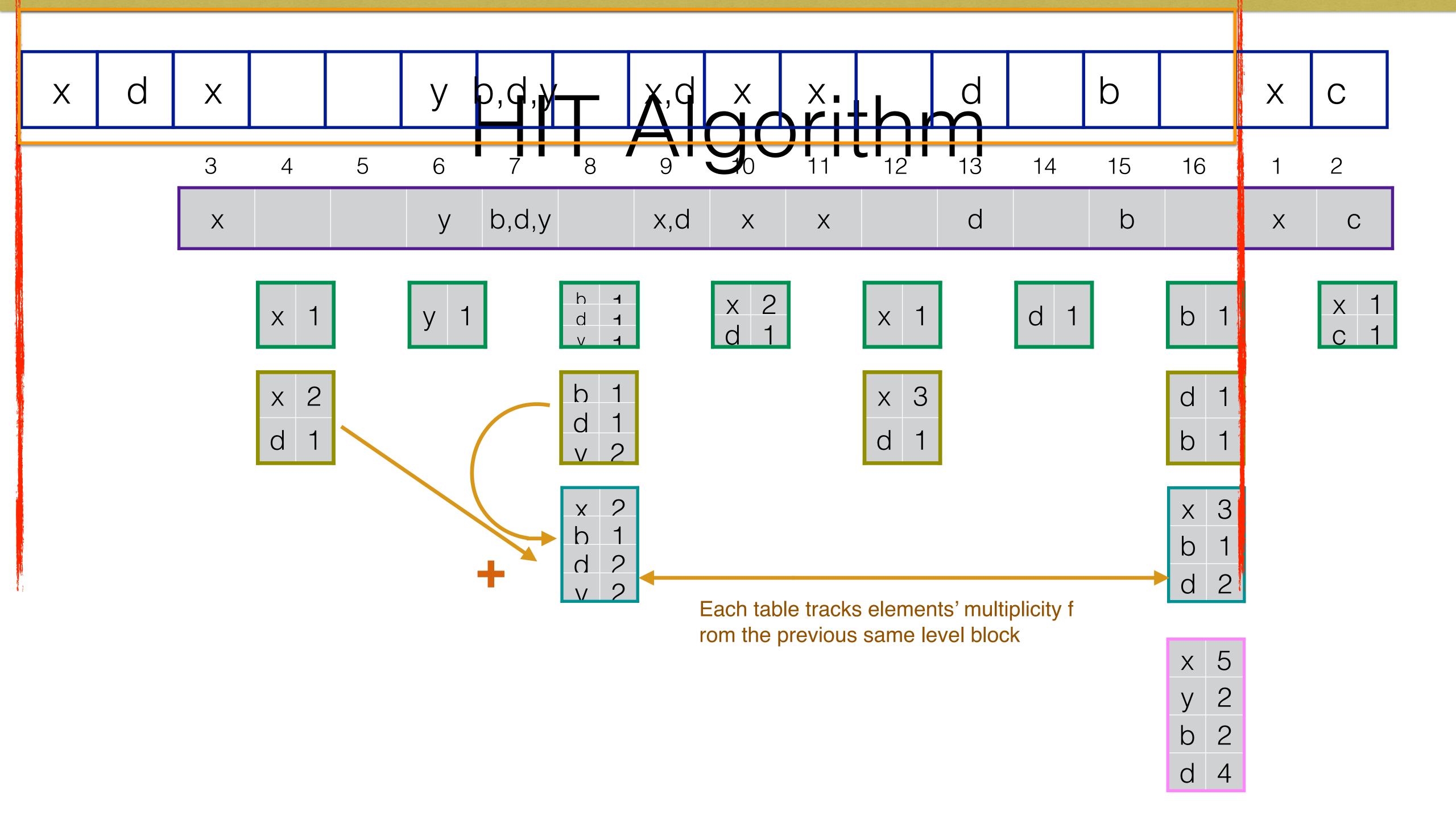
### HIT Algorithm Each level contains tables for half the blocks of previous level

- Higher levels of the tree allow efficient time computation



### Answering interval Frequency query

- For [i, j], let block\_i, block\_j be the relevant blocks
  - Scan backward from block\_j to block\_i, Greedily using the highest possible level at each point.
  - If block\_j> block\_i all tables are valid
  - Otherwise, use level\_0 between block\_0 to block\_j and compute block\_i to block\_n as before



### Answering interval Frequency query

- Query computation takes at most
- Solution: Choose always the highest valid level of valid tables

steps  $2\log n$ • Corner case: Content of a table may refers to a departing block

### Evaluations



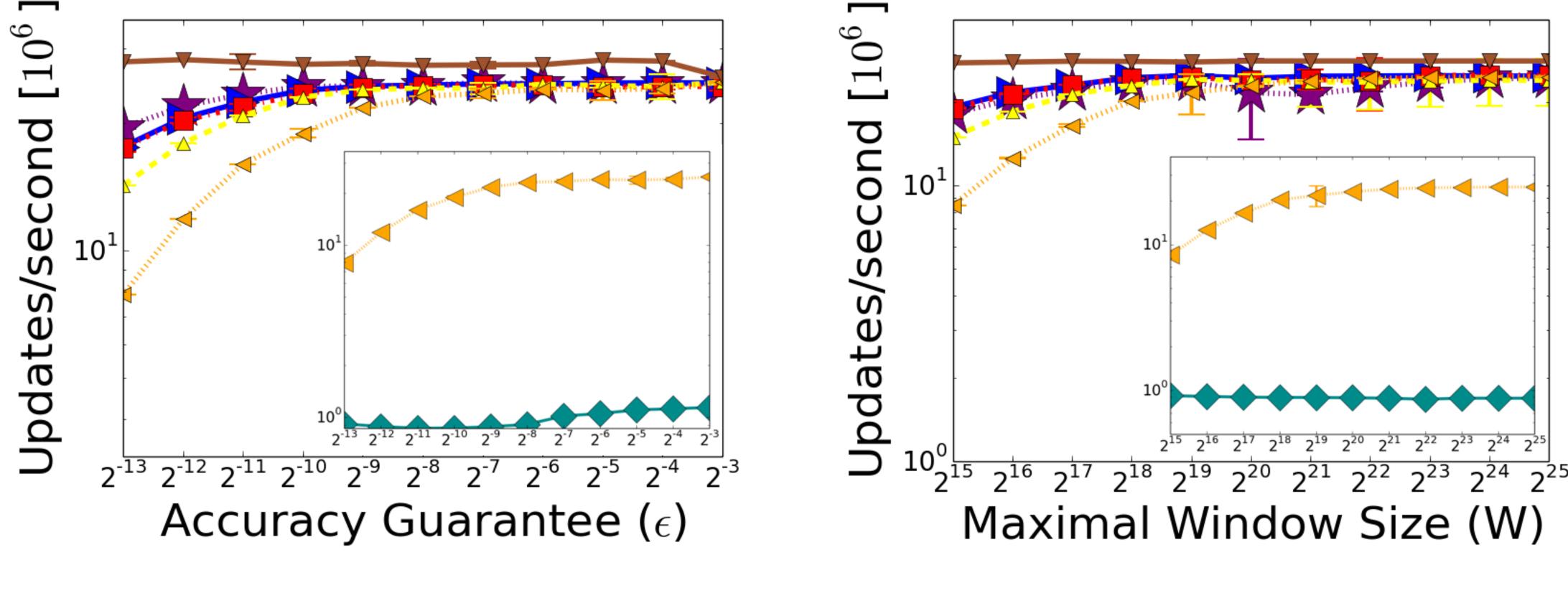
- C++ implementation
- ECM is configured with
- Backbone dataset

### Setup

 $\delta = 0.01\%$ 

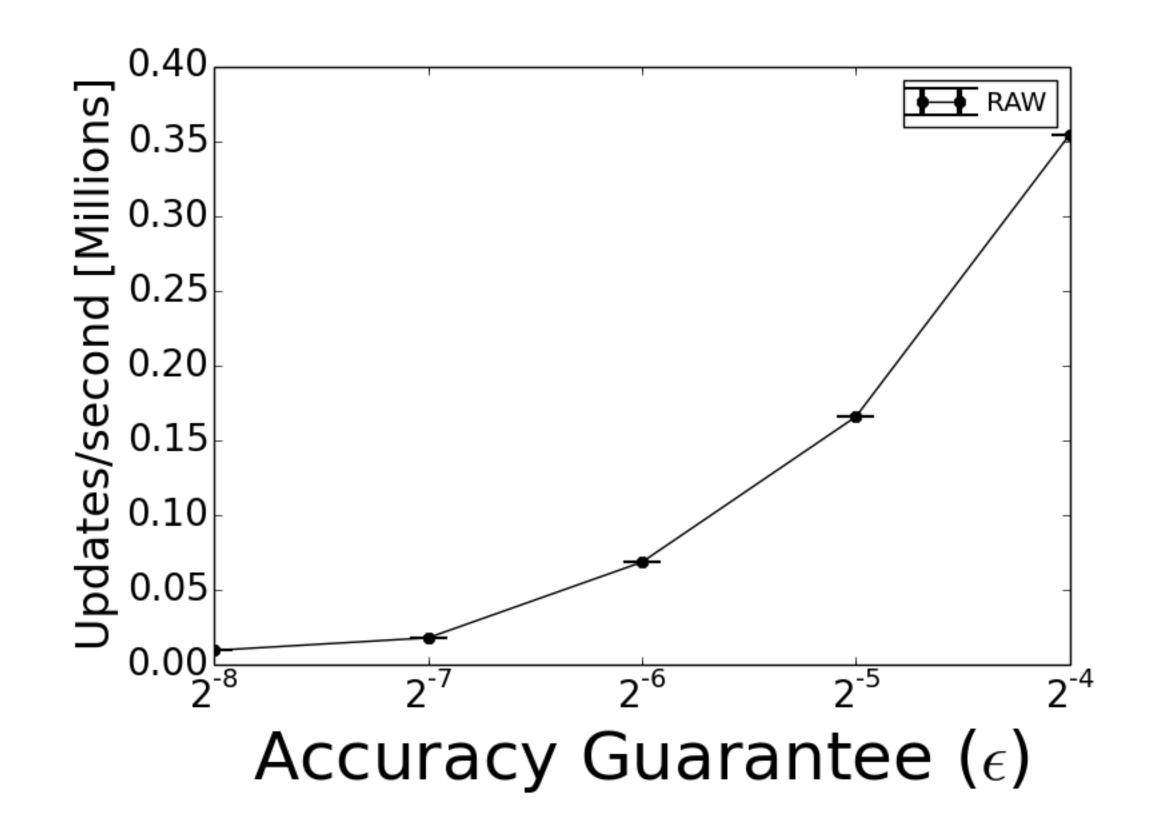
### W= $2^{20}$ , epsilon = $2^{-8}$ , interval size = $1^{8}$ Window

### Update Speed comparison

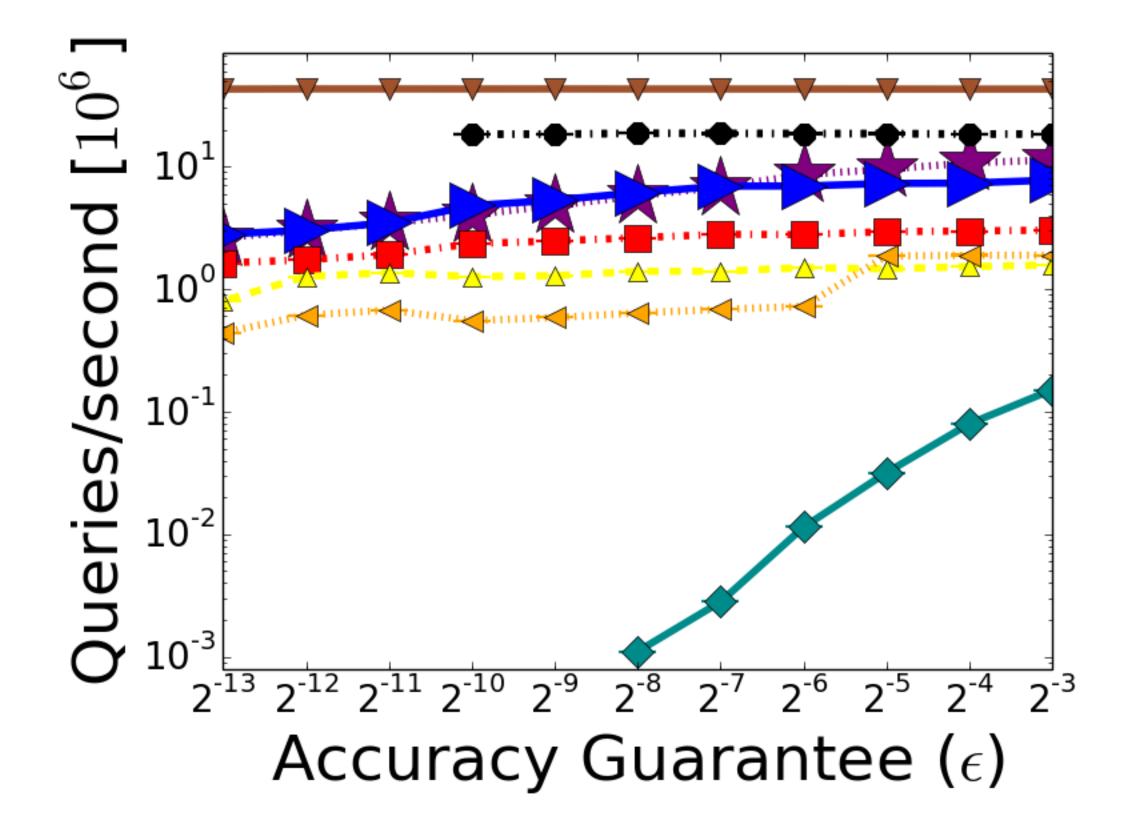


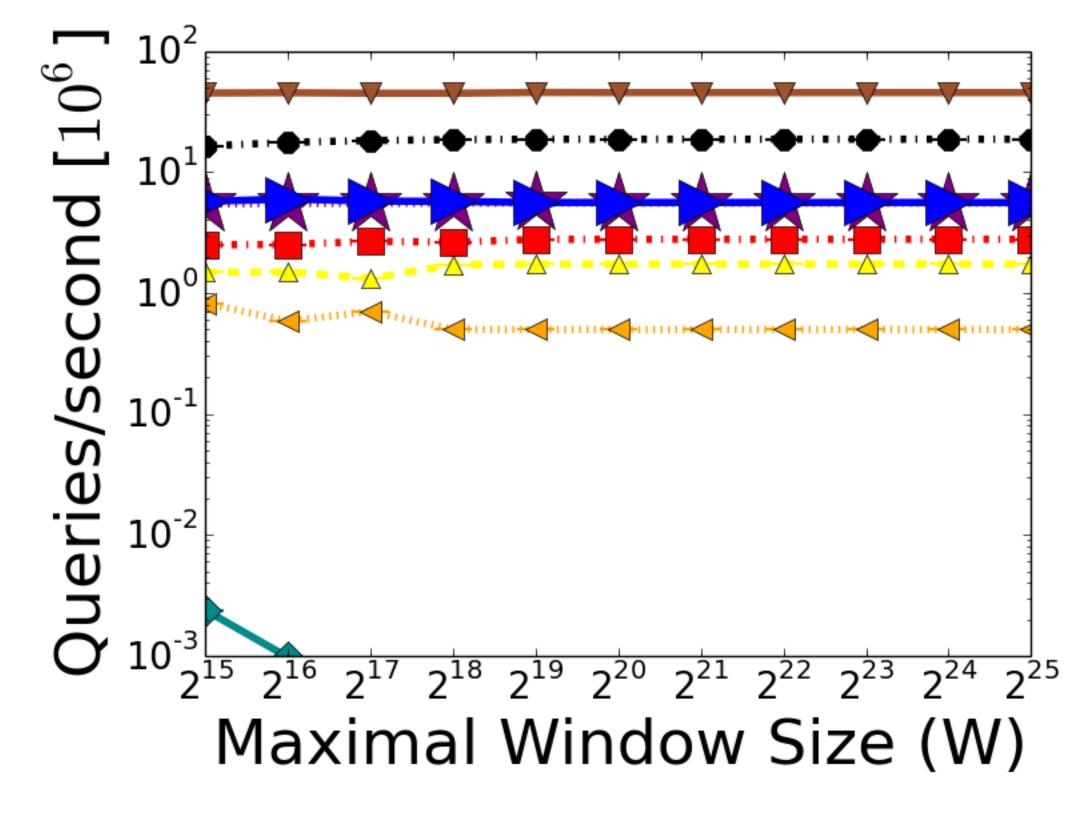


### Update Speed comparison



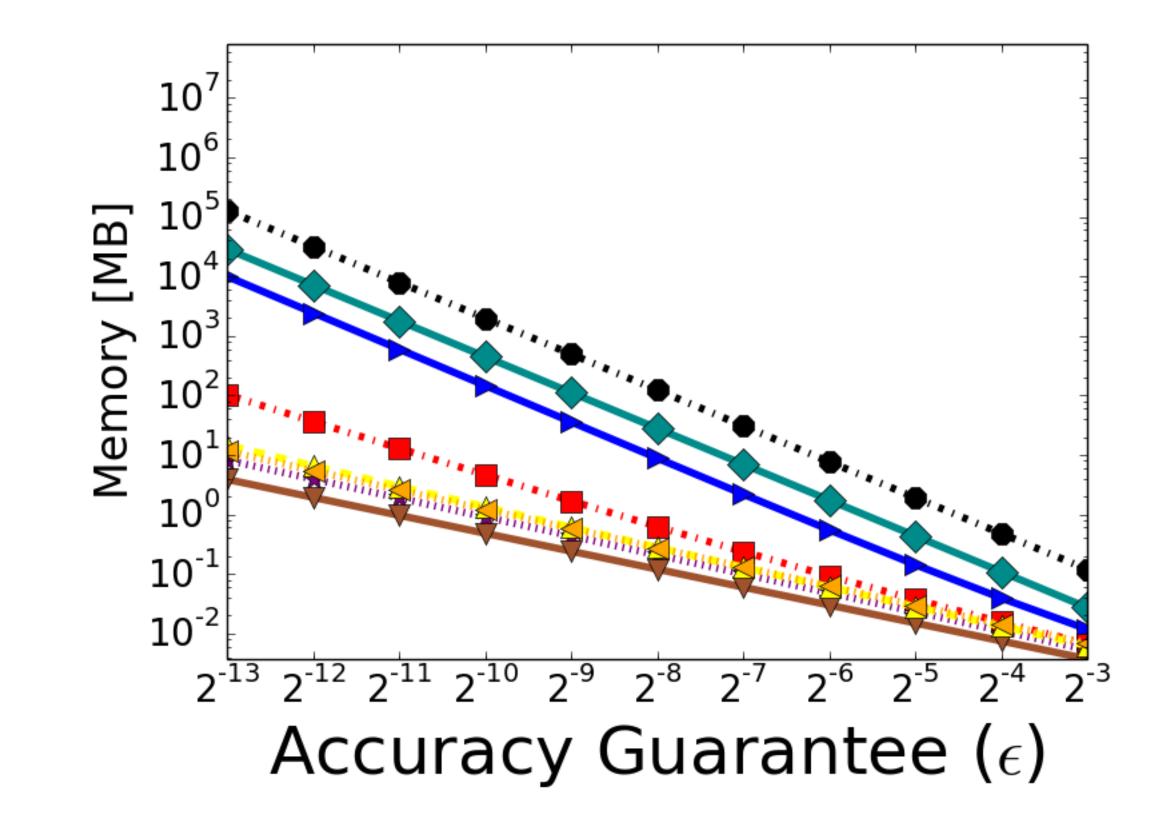
## Query Speed comparison





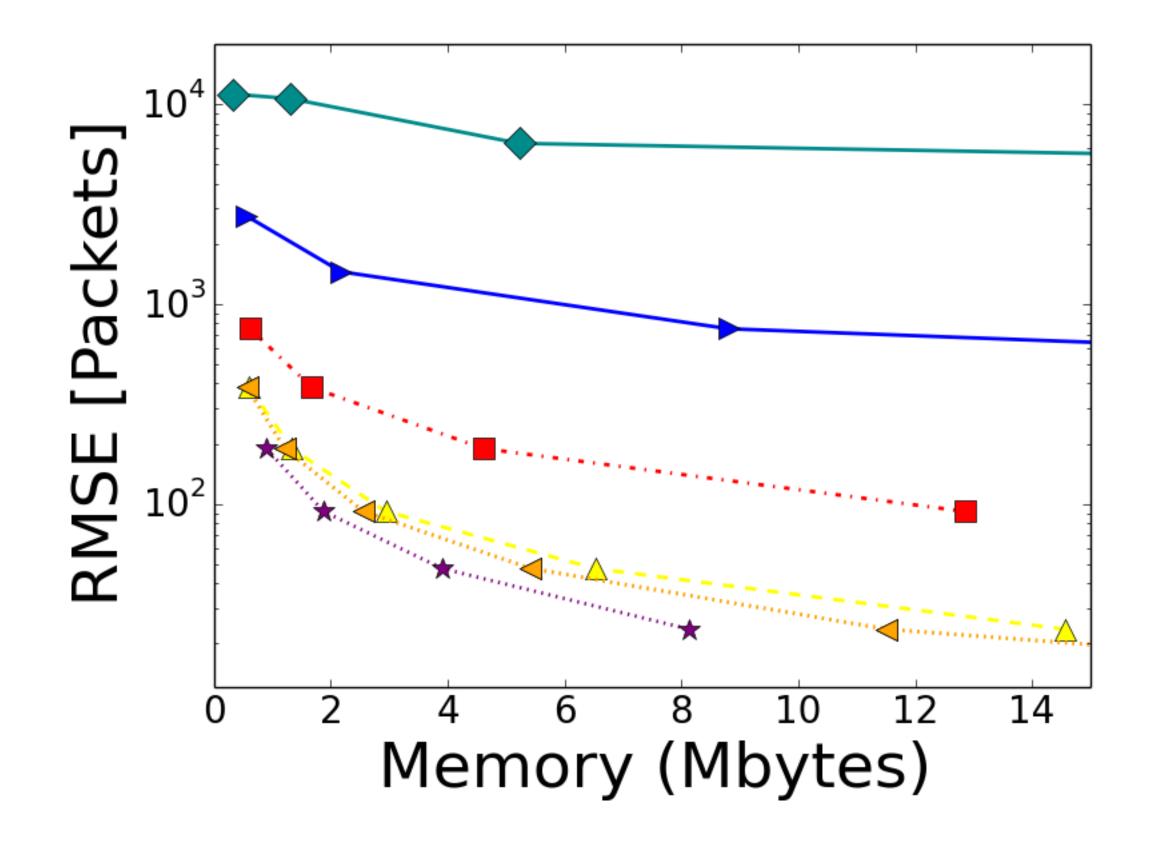








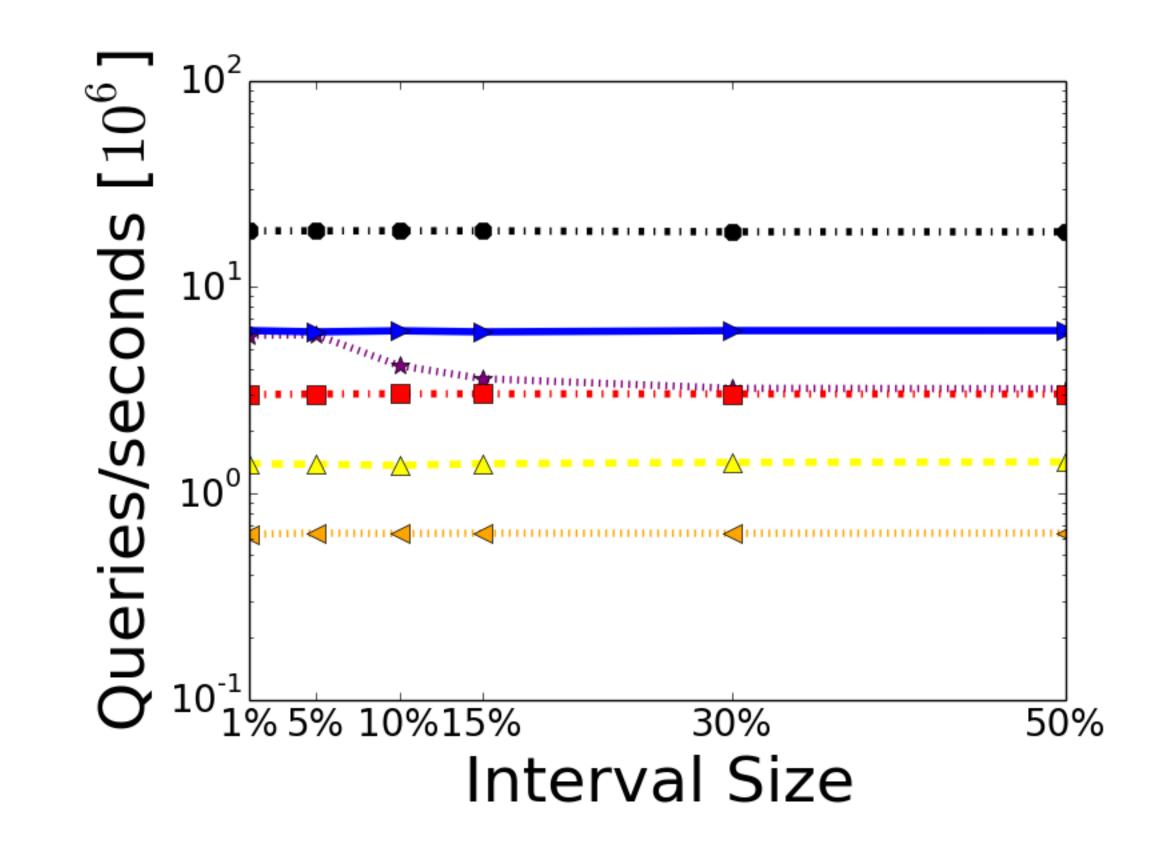
### Memory Consumption



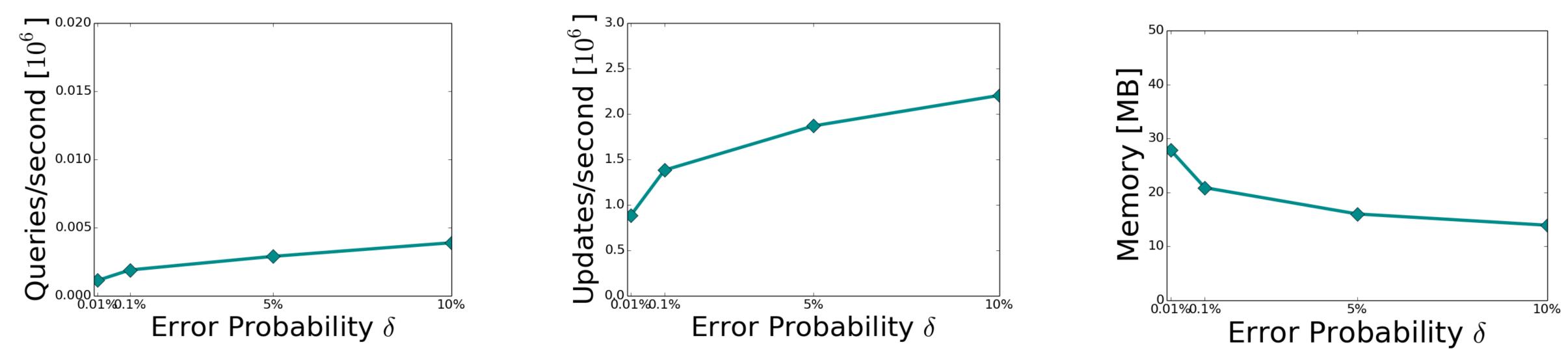




### vart interval sizes







ECM space and performance comparison

Thank YOU!